Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 101(8): 833-843, Dec. 2006. ilus
Article in English | LILACS | ID: lil-440569

ABSTRACT

The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.


Subject(s)
Humans , Animals , DNA, Kinetoplast/genetics , Gene Expression/genetics , Long Interspersed Nucleotide Elements/genetics , Retroelements/genetics , Trypanosoma cruzi/genetics , Cell Line/parasitology , Gene Transfer, Horizontal , Host-Parasite Interactions/genetics , Macrophages/parasitology , Trypanosoma cruzi/physiology
2.
Mem. Inst. Oswaldo Cruz ; 101(5): 463-491, Aug. 2006. ilus, graf
Article in English | LILACS | ID: lil-437047

ABSTRACT

Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.


Subject(s)
Humans , Animals , Biological Evolution , Chagas Disease/genetics , Chagas Disease/pathology , DNA, Kinetoplast/genetics , Trypanosoma cruzi/genetics , Acute Disease , Birds , Chronic Disease , Mammals , Mutation , Phenotype
3.
Rev. Inst. Med. Trop. Säo Paulo ; 42(3): 157-61, May-Jun. 2000. ilus, tab
Article in English | LILACS | ID: lil-262695

ABSTRACT

We used a molecular method and demonstrated that treatment of the chronic human Trypanosoma cruzi infections with nitroderivatives did not lead to parasitological cure. Seventeen treated and 17 untreated chronic Chagas' disease patients, with at least two out of three positive serologic assays for the infection, and 17 control subjects formed the study groups. PCR assays with nested sets of T. cruzi DNA primers monitored the efficacy of treatment. The amplification products were hybridized to their complementary internal sequences. Untreated and treated Chagas' disease patients yielded PCR amplification products with T. cruzi nuclear DNA primers. Competitive PCR was conducted to determine the quantity of parasites in the blood and revealed < 1 to 75 T. cruzi/ml in untreated (means 25.83 +/- 26.32) and < 1 to 36 T. cruzi/ml in treated (means 6.45 +/- 9.28) Chagas' disease patients. The difference between the means was not statistically significant. These findings reveal a need for precise definition of the role of treatment of chronic Chagas'disease patients with nitrofuran and nitroimidazole compounds.


Subject(s)
Humans , Male , Chagas Disease/drug therapy , Nifurtimox/therapeutic use , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/isolation & purification , Chagas Disease/blood , Chronic Disease , DNA Primers , Hybridization, Genetic , Polymerase Chain Reaction/methods , Treatment Outcome , Trypanosoma cruzi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL